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INTRODUJCTION

The shrink fit fastening process is widely used in industry to produce

tight, precision assemblies where other fastening methods are neither necessary

nor practical. By shrinking a thin ring onto a disk of the same thickness, an

elastic state of biaxial, hydrostatic stress can be induced in the disk. For

sufficiently small values of interference of the fit, the ring and disk remain

elastic; for large values of interference, the ring becomes plastic, first at

the interference; for yet larger values of interference, it is possible to pro-

duce a plastic state in the disk. This problem was analyzed recently by Gamer

and Lance (ref 1) considering the same materials for the disk and ring.

In this report we examine a thin composite shrink fit assembly using a

plane-stress elastic-plastic analysis. The ring and disk are made of different

materials. Interferences large enough to induce plastic deformations in the

ring are considered. The ring material is assumed to be a linear strain-

hardening material that obeys Tresca's yield condition and the associated flow

rule. The stresses and deformations in the shrink fit assembly are obtained as

functions of the interference of the fit.

ELASTIC ASSEMBLY

A shrink fit assembly is shown in Figure 1. The assembly may be produced

by cooling the disk and/or heating the ring with the manufactured interference

1. The common interference radius of the assembly is a. The thickness, h, is

small compared to a, and hence, the state of stress may be assumed to be plane.

All thermal effects are neglected and the displacement is assumed to be small

everywhere.

10emer, U. and Lance, R. H4., "Residual Stresses in Shrink Fits," Int. J. Mech.
Sci., Vol. 25, No. 7, 1983, pp. 465-470.



For small values of interference of fit, the stress state in the entire

assembly is elastic. The stresses and displacements in the ring are

Or P a' a' (la)a .... ... - -- ; -- 1
as I - a#/bs bt rs (1b)

u/r a (P/E)[(l+v)(a'/rI) + (1-p)(a'/b')]/(1-a'/b') (lc)

and in the disk

Or a0 z -P , u/r a -(1-vl)P/E 1  (2)

where E, v and El, vI are the material constants of the ring and disk, respec-

tively. At the interface, ua (ring) - ua (disk) a I by the compatibility

requirement. The interference pressure (p) is a function of the interference

(I) given by

E1 al as a' E
P a ( b b ;) El (3)

For sufficiently large values of the interference, the stresses in the ring

reach the yield limit. Assuming that Tresca's yield condition governs the

behavior of the material, the ring first becomes plastic at the interference

when the stresses satisfy

00 - Or z Oo (4)

where o is the initial tensile yield stress. The solution for the critical

interference pressure to cause incipient plastic deformation is

p* - % 0o(1 - a'/bt) (5)

and it follows from Eq. (3) that the interference for the onset of plastic flow

is

ao a a' at E
* "-" - [(1I+) + (l-V) -- + (1-Vli)(1 - -;) --1 (6)

E 2 bt b El

2



which reduces to I* u aeo/E for the special case (E1 a E, v1 - v) consldereo in

Reference 1.

PARTIALLY PLASTIC ASSEMBLY

For values of interference larger than that given by Eq. (4), a plastic

zone forms in the ring, so that for a 4 r 4 p the ring is plastic, while for p 4

r 4 b, the ring material is still in an elastic state. The elastic-plastic

interface radius p is a function of the interference I.

We assume that the ring is made of a linear work-hardening material which

obeys Tresca's yield condition

00 - Or = a (7)

where the yield stress o is a function of the plastic strain cp . For a linear

work-hardening material, we have

a Z ao(1+*rc p ) and n a (E/oo)m/(1-m) (8)

where 4 (or m) is the hardening parameter.

Applying the usual flow rule and following the method of analysis reported

by Gamer and Lance (ref 1) and Bland (ref 2), the expressions for the stresses

and the displacement can be obtained explicitly. The complete solution in a 4 r

4 p is:

r D
Or a a°(2-m)[In - - 1(1-O)n - r-2 ] + C (9)

a E
r 0

*- vo(1-m)[l+1n - + %(1-i)n r-2 ] + C (10)

00 r D C D
(t-v)'lu -- (1-m)[rin - - 36(1-v)q - r-'] + - r + - r-' (11)

E a E E E

1Gamer, U. and Lance, R. H., "Residual Stresses in Shrink Fits," Int. J. Mech.
Sci., Vol. 25, No. 7, 1983, pp. 465-470.
2Bjji, D. R., "Elastoplastic Thick-Walled Tubes of Work-Hardening Materials
Subject to Internal and External Pressures and Temperature Gradients," J. Mech.
Phys. Solids, Vol. 4, 1956, pp. 209-229.
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In the elastic zone, p 4 r ( b, the stresses and the displacement are:

Or E E B (12)
= --- AT ---

are 1-V 1+v rs (13)

u = Ar + B/r (14)

The constants A, B, C, 0, p, and p all depend on the interference I, and

can be evaluated by considering the following conditions: continuity of stress

and displacement at r = p requires ar(p-) = ar(P + ) and u(p-) = u(p+). At the

ring-disk interface Or(a) = -p and at the outer surface of the ring ar(b) = 0.

The yield condition in Eq. (7) must be satisfied at r = p and finally, com-

patibility of the displacement field with the interference I requires that u(a+ )

- u(a-) = I. These conditions are sufficient to determine all unknown parame-

ters. In this report the constants A, B, C, D are determined as functions of p.

A = %(1-v)(ao/E)(p/b)2 , B = 3(1+v)(ao/E)p2

C = ao[% - (1-m)In(b/a) - %(1-p'/b*)] , D = aop2/(1-) (15)

The dimensionless interference pressure and interference are given, respec-

tively, by

p= P/ 0  = J(1-p'/b2) + (1-m)In(p/a) + %m(p2/a'-1) (16)

I = (E/o)I/a = (p/a)2 - [(t-V) - (1-vl)E/E 1](P/o) (17)

When the ring and disk are made of the same material, i.e., E1 = E, vj = V, Eq.

(17) reduces to the simple formula, (E/o)I/a = (p/a)'. For this special case

(ref 1), the constants A, B, C, 0, P, and p can be expressed explicitly as func-

tions of interference I. In general, the interference pressure (p) is related

to the interference (I) implicitly through the elastic-plastic interface (p) as

shown in Eqs. (16) and (17) for a ( p 4 b. The upper limit of the partially

lGamer, U. and Lance, R. H., "Residual Stresses in Shrink Fits," Int. J. Mech.
Sci., Vol. 25, No. 7, 1983, pp. 465-470.
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plastic assembly is obtained by letting p = b. The corresponding interference

pressure (p**) and interference (I**) are

p**/ao - (1-m)In(b/a) + %m(b&/a2-1)

(E/ao)I**/a = (b/a)2 - [(1-v) - (1-vl)E/E1 ]p**/ao (18)

FULLY PLASTIC ASSEMBLY

When the interference I is larger than I**, we have reached the fully

plastic state in the ring. In this case, the expressions for the stresses and

the displacement in a 4 r 4 b are still the same as those given by Eqs. (9),

(10), and (11). The constants C, D, and the interference p are determined with

the boundary conditions ar(a) = -P, ar(b) = 0, and the compatibility requirement

u(a ) - u(a-) = I. The results for the constants are

C = (pa2/b2 - (1-m)ao ln(b/a)]/(1-a2/b2 )

0 = 2a2[p - (1-m)aoln(b/a)]/[m(l-v)(1-a2/b2)] (19)

and the interference pressure is given as a function of interference by

p m(Eao/Ia)(1-a2 /b2) + 2(1-m)ln(b/a)
--- - ------------------- -(20)

o 2 - m[(1-) - (j-vj)E/E 1)(1-a2/b2 )

NUMERICAL RESULTS AND DISCUSSIONS

The analysis described above makes it possible to predict the interference

pressure in a composite shrink fit assembly, and hence, determine the stress

state in the ring and disk as a function of the interference. The numerical

results have been obtained for shrink fit assemblies with different geometric

ratio (a a a/b), hardening parameter (m), and different combinations of

materials. For a steel ring with a = 0.5, m = 0.0, E = 30x106 psi, v = 0.3, ao

- 15x10 4 psi, we have considered three types of disks: (a) rigid disk with E=

1000 E, VI = 0.0, 01 u 1000 ao; (b) steel disk of the same material as the ring;

5



(c) a disk made of tungsten carbide with El - 88.54106 psi, vj = 0.258, a,

50xI14 psi. The numerical results of the interference pressure (p/c70) for these

three cases are presented graphically in Figure 2 as functions of the inter-

ference (I). The results of the hoop stress at the inside surface of the ring

are presented in Figure 3 also for these three cases. As can be seen from these

two figures, the results for the composite shrink fit assembly marked (c) fall

between the two limits established by cases (a) and (b).

For composite shrink fit assemblies made of tungsten carbide disk and steel

ring with a = 0.5, m = 0.0, 0.1, 0.2, the results are presented in Figures 4 and

5, respectively, for the interference pressure and the hoop stress at the bore

as functions of the interference. The effect of hardening parameter (in) on

these relations can be seen from these two figures. For the same combination of

composite shrink fit assembly with m = 0.05, a = 1/4, 1/3, 1/2, 3/4, the results

showing the effect of geometric ratio (a) are shown in Figures 6 and 7 for the

interference pressure and hoop stress at the bore, respectively.

The numerical results of the stresses and displacements in composite shrink

fit assemblies have also been obtained, but only some results are presented

here. The distributions of hoop stresses in a steel ring with a = 0.5 are shown

in Figures 8, 9, and 10 for m = 0.0, 0.1, 0.2, respectively. In each figure, we

have shown the results corresponding to four stages of interference: (a) initial

yielding (p/a =1.0), 1* = 0.832; (b) partial yielding (p/a = 1.5), I = 1.970,

1.960, 1.950; (c) complete yielding (p/a = 2.0), 1** = 3.689, 3.653, 3.617; (d)

fully plastic state with I = 1.5 1**. For an ideally plastic ring (m = 0.0),

the stress distribution remains unchanged after complete yielding has been

reached. For stra. -hardening rings, the stress distributions show large

variations, especially for large values of interference. As shown in Figures 8,J

6



9, and 10, the hardening parameter has a significant effect on the stress

distributions. Additional stress distributions in the ring with m a 0.1 are

shown in Figures 11 and 12 for a - 1/3 and 1/4, respectively. The effect of

geometric ratio on the distributions can be seen by comparing Figures 9, 11, and

12.

7
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